Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 90(4): e0174323, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470180

RESUMEN

Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.


Asunto(s)
Fenoles , Floroglucinol/análogos & derivados , Pseudomonas fluorescens , Pirroles , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas/metabolismo , Antibacterianos/farmacología , Pseudomonas fluorescens/genética
2.
Ecotoxicology ; 33(3): 266-280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436777

RESUMEN

With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.


Asunto(s)
Cíclidos , Contaminantes Químicos del Agua , Animales , Femenino , Cobre/toxicidad , Cobre/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Ecosistema , Hormonas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
3.
Heliyon ; 10(2): e24388, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298688

RESUMEN

To examine the impact of ginger volatile oil (GVO) on the growth of MDA-MB-231 breast cancer cells in the presence of bisphenol A (BPA) by modulating the diversity of gut microbiota. METHODS: MDA-MB-231 breast cancer cells were injected subcutaneously into the right armpit of female BALB/c Nude (nu/nu) mice to create a triple negative breast cancer model. Thirty nude mice were randomly divided into 5 groups: control group (distilled water every day), BPA control group (distilled PEG-400+ DMSO + cyclodextrin every day), BPA + GVO (0.25 mL/kg) group, BPA + GVO (0.5 mL/kg) group, BPA + GVO (1 mL/kg) group, 6 mice in each group; The drug was given by gavage once a day for 4 weeks. At the end of the experiment, the changes of tumor mass and tumor volume were observed and compared in 5 groups of tumor-bearing mice. High-throughput sequencing (16S rRNA) was used to detect the changes of gut microflora in each group. RESULTS: The volume and weight of breast cancer decreased in the low, medium and high dose groups of GVO. Among them, the difference between the high-dose group and the BPA group reached a significant level (P < 0.05). The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO. In the tumor control group, the ratio of Firmicutes(F) and Bacteroidea(B) respectively was 0.10:0.79 at the phylum level, while the ratio of BPA group further decreased (0.04:0.88). After feeding GVO, the number of Firmicutes and Bacteroidea increased, the F/B ratio increased, and the level of Lactobacillus and alistipes increased. In the BPA and GVO treatment group, the predominant gut microflora functions are cell membrane biogenesis, carbohydrate transport and metabolism. This is followed by amino acid transport and metabolism, and transcription function. After GVO administration, the Gram-positive bacteria (G+) ratio had an increasing trend and the Gram-negative bacteria (G-)ratio had a decreasing trend. CONCLUSION: The species and abundance of gut flora decreased following BPA treatment, but increased after combined treatment of BPA with GVO.

4.
Nat Biotechnol ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168982

RESUMEN

The ability to control gene expression in mammalian cells is crucial for safe and efficacious gene therapies and for elucidating gene functions. Current gene regulation systems have limitations such as harmful immune responses or low efficiency. We describe the pA regulator, an RNA-based switch that controls mammalian gene expression through modulation of a synthetic polyA signal (PAS) cleavage introduced into the 5' UTR of a transgene. The cleavage is modulated by a 'dual-mechanism'-(1) aptamer clamping to inhibit PAS cleavage and (2) drug-induced alternative splicing that removes the PAS, both activated by drug binding. This RNA-based methodology circumvents the immune responses observed in other systems and achieves a 900-fold induction with an EC50 of 0.5 µg ml-1 tetracycline (Tc), which is well within the FDA-approved dose range. The pA regulator effectively controls the luciferase transgene in live mice and the endogenous CD133 gene in human cells, in a dose-dependent and reversible manner with long-term stability.

5.
J Phys Condens Matter ; 36(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38035380

RESUMEN

In this work, micro-ribbon strips and meanders based on CoFeNiSiB amorphous ribbons were fabricated by using the lithography technique and chemical etching. Flat and curved holders with different radius of curvature were obtained via 3D printing techniques for GMI testing. Longitudinal and transverse GMI (LGMI and TGMI) behaviors of micro-ribbon sensors in different bending directions and degrees were systematically investigated. The results show the LGMI and TGMI effects of micro-ribbon meanders with one turn is most sensitive to bending. It can be used in the development of deformation sensors. In addition, there is a linear range of field in the LGMI and TGMI curves of micro ribbons under different bending conditions, and the sensitivity of micro-ribbon sensors shows no significant change in the range. In particular, the micro-ribbon meanders with three turns are the least sensitive to bending deformation and can be used to develop stable and flexible GMI sensors for wearable electronics devices.

6.
Heliyon ; 9(7): e17534, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37456047

RESUMEN

The aim of this research is to investigate lipid-lowering influence of dietary ginger (Zingier officinales Rocs) polysaccharides (GPS) on hyperlipidemia rats. Rat models with hyperlipidemia was established by high-fat food diet (HFD). Comparing to GP-negative model group, GPS attenuated several effects of HFD feeding, including the levels of blood lipid biochemistry, serum inflammatory markers (tumor necrosis factor TNF-a, interleukin IL-6), antioxidant capacity (superoxide dismutase SOD, glutathione peroxidase GSH-Px, total antioxidant capacity T-AOC, propylene dialdehyde MDA), uric acid and immune index. 16 S rDNA gene sequencing of fecal samples showed that GPS increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes; This changes in microbial community structure can help prevent diet-induced metabolic disease. These results suggest that GPs may act on the gut, changing the structure of the gut microbial community, thereby reducing intestinal and systemic inflammation, thus improved metabolic outcomes.

7.
Materials (Basel) ; 16(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37049137

RESUMEN

Titanium-extracted tailing slag (TETS) has high activity, but the content of chloride ions is high. To effectively bind the chloride ions, CaO was used to activate the TETS, and the solidified cementitious material of CaO-activated TETS was prepared. The effects of CaO content and curing age on the strength of solidified samples, chloride binding capacity, and chloride binding mechanism were studied. By means of XRD, FTIR, SEM, and EDS, the hydration reaction products, microstructure, morphology, and micro-components of the solidified sample were characterized. The results show that the chloride ions can be effectively bound by using CaO to activate TETS with higher mechanical strength. When the CaO content is 10 wt%, the strength of the 28-day-cured body can reach more than 20 MPa, the chloride ion binding amount is 38.93 mg/g, and the chloride binding rate is as high as 68%. The new product phases of the solidified sample are mainly Friedel's salt (FS) and calcite, in which the amount of FS production and the degree of crystal development are affected by the CaO content and curing age. The chloride binding ions in the solidified sample are mainly the chemical binding by FS. The FS diffraction peak strength increases with the increase of CaO content and curing age, but the calcite diffraction peak strength is less affected by them. FS mainly accumulates and grows in the pores of the solidified sample. It can optimize the pore structure of the solidified sample and improve the strength of the solidified sample while binding chloride ions. The results can provide useful information for the resource utilization of chlorine-containing TETS, the improvement of durability of Marine concrete, and the application of sea sand in concrete.

8.
Oncol Lett ; 25(5): 195, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37113393

RESUMEN

To investigate the potential mechanism of ginger in the treatment of triple-negative breast cancer (TNBC) based on network pharmacology, molecular docking and in vitro cell experiments. The Traditional Chinese Medicine Systems Pharmacology Database And Analysis Platform, the Bioinformatics Analysis Tool For Molecular Mechanism Of Traditional Chinese Medicine and the HERB database and literature search were used to search for the main active compounds of ginger. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were used to predict the possible molecular mechanism and signaling pathway of ginger in the treatment of triple negative breast cancer. The key core genes of ginger in the treatment of triple negative breast cancer were docked with the active ingredients of ginger on the Autodock platform, and the mechanism of ginger on triple negative breast cancer was further verified by in vitro cell experiments. As a result, 10 effective components, 27 potential targets and 10 Protein-Protein Interaction core genes were predicted in the treatment of triple negative breast cancer with ginger, involving 287 biological processes, 18 cellular components and 38 molecular functions. Ginger regulated the proliferation, migration and apoptosis of triple negative breast cancer cells by regulating TNF, IL-17, FoxO, MAPK, PI3K/AKT and other signaling pathways. The results of molecular docking showed that the lowest binding potential energy between dihydrocapsaicin (DHC) and EGFR protein was -7.70 kcal·mol-1, followed by that between 6-gingerol and EGFR protein was -7.30 kcal·mol-1 and that between DHC and CASP3 protein was -7.20 kcal·mol-1. In vitro cell experiments showed that ginger could inhibit the proliferation and migration of TNBC MDA-MB-231 cells, increase the mRNA expression of Caspase family CASP9 and the protein expression of CASP3 and BAX. Overall, based on the combination of network pharmacology and in vitro cell experiments, ginger has the characteristics of multi-target in the treatment of TNBC, which may play a regulatory role through the PI3K/AKT family. It provides a reference for the drug development of ginger and the clinical treatment of triple negative breast cancer.

9.
Aquat Toxicol ; 258: 106472, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907724

RESUMEN

Female tilapia of the Genetic Improvement of Farmed Tilapia (GIFT) strain were selected as an animal model to study the effects of four hormonal drugs in mitigating ovarian damage following exposure to copper and cadmium. After combined exposure to copper and cadmium in aqueous phase for 30 d, tilapia were randomly injected with oestradiol (E2), human chorionic gonadotropin (HCG), luteinizing hormone releasing hormone (LHRH), or coumestrol and raised in clear water for 7 d Ovarian samples were collected after combined exposure to heavy metals for 30 d and after recovery for 7 d Gonadosomatic index (GSI), copper and cadmium levels in the ovary, reproductive hormone levels in serum, and mRNA expression of key reproductive regulatory factors were determined. After 30 d of exposure to the combined copper and cadmium in aqueous phase, the Cd2+ content in tilapia ovarian tissue increased by 1,242.46% (p < 0.05), whereas the Cu2+ content, body weight, and GSI decreased by 68.48%, 34.46%, and 60.00% (p < 0.05), respectively. Additionally, E2 hormone levels in tilapia serum decreased by 17.55% (p < 0.05). After drug injection and recovery for 7 d, compared to the negative control group, the HCG group exhibited an increase of 39.57% (p < 0.05) in serum vitellogenin levels. Increases of 49.31%, 42.39%, and 45.91% (p < 0.05) in serum E2 levels were observed, and mRNA expression of 3ß-HSD increased by 100.64%, 113.16%, and 81.53% (p < 0.05) in the HCG, LHRH, and E2 groups, respectively. The mRNA expression of CYP11A1 in tilapia ovaries increased by 282.26% and 255.08% (p < 0.05) and mRNA expression of 17ß-HSD increased by 109.35% and 111.63% in the HCG and LHRH groups, respectively (p < 0.05). All four hormonal drugs, particularly HCG and LHRH, promoted the restoration of tilapia ovarian function to varying degrees after injury induced by combined exposure to copper and cadmium. This study presents the first hormonal treatment protocol for the mitigation of ovarian damage in fish exposed to combined aqueous phases of copper and cadmium as a strategy to prevent and treat fish ovarian damage induced by heavy metals.


Asunto(s)
Cíclidos , Tilapia , Contaminantes Químicos del Agua , Humanos , Animales , Femenino , Ovario , Tilapia/metabolismo , Cadmio/metabolismo , Cobre/metabolismo , Contaminantes Químicos del Agua/toxicidad , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , ARN Mensajero/metabolismo
10.
Ann Transl Med ; 11(2): 91, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36819533

RESUMEN

Background: To examine the effects of each dose of decoction of Angelica sinensis (Dang gui), Zingiberis Rhizoma Recens (Sheng jiang), and mutton (DAZM) on the physiological and biochemical indexes of female rats with spleen-kidney Yang deficiency (SKYD) through 30-day feeding of DAZM, and to evaluate the tonifying effect of DAZM combined with the system of benefit damage index-general score (BDI-GS). Methods: Sprague Dawley (SD) rats were administered adenine and senna water to establish a SKYD model. The rats were then allocated to 4 groups at random: Model group, and L group, 4.2 g/kg, M group, 8.4 g/kg and H group, 16.8 g/kg. In addition, the group of normal feeding with unlimited diet was set as N group. Blood samples were taken to detect the relevant physiological and biochemical indexes. For organ coefficient analysis, 10 kinds of organ tissues were dissected and weighed. The tonifying effect of DAZM was discussed according to the BDI-GS system. Results: During the modeling, the weight of rats in the normal group displayed a marked growth trend, and the weight of the model group was markedly lower than that of the normal group. After feeding the rats DAZM at a low, intermediate, and high dose, the anal temperature of rats in each group continued to rise, and finally remained basically the same as that of normal rats. Hematological and urine examinations revealed that the urea nitrogen and creatinine (CRE) of the model group and the experimental group were markedly higher than those of the normal group, and there were marked differences. After intragastric administration of DAZM, E2 increased markedly. The BDI-GS values of the liver, spleen, lung, kidney, brain, ovary, and adrenal gland of female rats in the 3 administration groups of DAZM were >1, and the total cumulative GS value of each organ of female rats was more than 10. Conclusions: The decoction of DAZM has no obvious effect on the growth, metabolism, and development of female rats with SKYD, causes no obvious damage to organs, and has a certain reparative effect on the kidney damage caused by SKYD.

11.
Materials (Basel) ; 16(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36769944

RESUMEN

Hardened pastes with different mass percentages of steel slag (SS)/titanium-extracted tailing slag (TETS) were prepared under fixed CaO content to determine the influencing mechanism of TETS on the strength of CaO SS hardened paste. Furthermore, the effects and laws of curing time and SS/TETS ratios on the strength of hardened pastes were also investigated in this study. Importantly, hydration products, microstructures and the micro-area compositions of hardened pastes were analysed using X-ray diffraction, Fourier-transform infrared spectroscopy and scanning electron microscopy-energy dispersive spectrometer, respectively, to reveal the influencing mechanism of TETS on the CaO SS hardened pastes. The results demonstrated that the early strength of hardened pastes increases considerably following the inclusion of TETS. Specifically, the strength of the sample with an SS/TETS ratio of 22.5:67.5 at 1 d can be increased by more than 14 times. Notably, its strength at 90 days reached 19.36 MPa. Moreover, the diffraction peaks of calcite and C-S-H in the samples were also strengthened. Meanwhile, a diffraction peak of hydrocalumite appeared, and the calcites in the samples were curled up. When the SS/TETS ratio was equal to or more than 45:45, a diffraction peak of Ca(OH)2 appeared in the sample. Only a diffraction peak of Ca(OH)2 and weak diffraction peaks of calcite and C-S-H were observed in the samples without TETS, but there was no diffraction peak of hydrocalumite. The strength at 90 days was only 4.92 MPa. The increased strength of the hardened paste is closely related to the production of new phases after adding TETS. Solid particles in the hardened paste are cemented into a whole because of the hydration of C-S-H. Calcite forms the skeleton of the hardened pastes, whereas hydrocalumite fills in the pores among particles in hardened pastes, thus making them more compacted. As a result, there is increased.

12.
Materials (Basel) ; 15(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499902

RESUMEN

A series of three-dimensional porous composite α-MnO2/reduced graphene oxides (α-MnO2/RGO) were prepared by nano-assembly in a hydrothermal environment at pH 9.0-13.0 using graphene oxide as the precursor, KMnO4 and MnCl2 as the manganese sources and F- as the control agent of the α-MnO2 crystal form. The α-MnO2/RGO composites prepared at different hydrothermal pH levels presented porous network structures but there were significant differences in these structures. The special pore structure promoted the migration of ions in the electrolyte in the electrode material, and the larger specific surface area promoted the contact between the electrode material and the electrolyte ions. The introduction of graphene solved the problem of poor conductivity of MnO2, facilitated the rapid transfer of electrons, and significantly improved the electrochemical performance of materials. When the pH was 12.0, the specific surface area of the 3D porous composite material αMGs-12.0 was 264 m2·g-1, and it displayed the best super-capacitive performance; in Na2SO4 solution with 1.0 mol·L-1 electrolyte, the specific capacitance was 504 F·g-1 when the current density was 0.5 A·g-1 and the specific capacitance retention rate after 5000 cycles was 88.27%, showing that the composite had excellent electrochemical performance.

13.
New Phytol ; 233(1): 297-312, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34618941

RESUMEN

How plants balance growth and stress adaptation is a long-standing topic in plant biology. Abscisic acid (ABA) induces the expression of the stress-responsive Asparagine Rich Protein (NRP), which promotes the vacuolar degradation of PP6 phosphatase FyPP3, releasing ABI5 transcription factor to initiate transcription. Whether NRP is required for growth remains unknown. We generated an nrp1 nrp2 double mutant, which had a dwarf phenotype that can be rescued by inhibiting auxin transport. Insufficient auxin in the transition zone and over-accumulation of auxin at the root tip was responsible for the short elongation zone and short-root phenotype of nrp1 nrp2. The auxin efflux carrier PIN2 over-accumulated in nrp1 nrp2 and became de-polarized at the plasma membrane, leading to slower root basipetal auxin transport. Knock-out of PIN2 suppressed the dwarf phenotype of nrp1 nrp2. Furthermore, ABA can induce NRP-dependent vacuolar degradation of PIN2 to inhibit primary root elongation. FyPP3 also is required for NRP-mediated PIN2 turnover. In summary, in growth condition, NRP promotes PIN2 vacuolar degradation to help maintain PIN2 protein concentration and polarity, facilitating the establishment of the elongation zone and primary root elongation. When stressed, ABA employs this pathway to inhibit root elongation for stress adaptation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas/metabolismo
15.
mBio ; 12(1)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622718

RESUMEN

AlgW, a membrane-bound periplasmic serine protease belonging to the HtrA protein family, is a key regulator of the regulated intramembrane proteolysis (RIP) pathway and is responsible for transmitting the envelope stress signals in Pseudomonas aeruginosa The AlgW PDZ domain senses and binds the C-terminal of mis-localized outer membrane proteins (OMPs) or periplasmic protein MucE, leading to catalytic activation of the protease domain. While AlgW is functionally well studied, its exact activation mechanism remains to be elucidated. Here, we show that AlgW is a novel HtrA protease that can be biochemically activated by both peptide and lipid signals. Compared with the corresponding homologue DegS in Escherichia coli, AlgW exhibits a distinct substrate specificity and regulation mechanism. Structural, biochemical, and mutagenic analyses revealed that, by specifically binding to the C-terminal decapeptide of MucE, AlgW could adopt more relaxed conformation and obtain higher activity than with tripeptide activation. We also investigated the regulatory mechanism of the LA loop in AlgW and proved that the unique structural feature of this region was responsible for the distinct enzymatic property of AlgW. These results demonstrate the unique and diverse activation mechanism of AlgW, which P. aeruginosa may utilize to enhance its adaptability to environmental stress.IMPORTANCE HtrA-family proteases are commonly employed to sense the protein folding stress and activate the regulated intramembrane proteolysis (RIP) cascade in Gram-negative bacteria. Here, we reveal the unique dual-signal activation and dynamic regulation properties of AlgW, an HtrA-type protease triggering the AlgU stress-response pathway, which controls alginate production and mucoid conversion in Pseudomonas aeruginosa The structural and functional data offer insights into the molecular basis underlying the transition of different activation states of AlgW in response to different effectors. Probing these unique features provides an opportunity to correlate the diverse regulation mechanism of AlgW with the high adaptability of P. aeruginosa to environmental changes during infection.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Pseudomonas aeruginosa/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Cristalización , Escherichia coli/genética , Proteolisis , Pseudomonas aeruginosa/metabolismo , Proteínas Represoras/química
16.
Sci Total Environ ; 757: 143786, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33223165

RESUMEN

Biogas slurry is widely used as a crop fertilizer due to its available nitrogen content. However, it remains unclear how biogas slurry application affects soil organic carbon (SOC) status and soil microbial community under typical agricultural systems. Here, under a wheat-rice field experiment, we examined the responses of SOC and soil bacterial and fungal communities to biogas slurry application, both with (BSS) and without (BS) straw return, relative to chemical nitrogen fertilizer with (CFS) and without (CF) straw return. The BS treatment significantly increased total organic carbon (TOC) at all soil depths (0-60 cm), compared to CF. Greater TOC occurred at 20-40 cm depth under BSS relative to all other treatments. However, straw return had no impact on soil TOC content under the CF and CFS treatments. Labile organic carbon (LOC) in the topsoil and recalcitrant organic carbon (ROC) at 20-60 cm depth was significantly greater under BS relative to CF. The bacterial class Gammaproteobacteria and family Hyphomicrobiaceae were found to be specifically abundant under biogas slurry application after one year of wheat-rice double cropping. Network analyses showed that the soil bacterial community under biogas slurry application was more complex than under chemical fertilizer application, while the opposite was true for the fungal community. Correlations between network modules and the SOC fractions indicated that biogas slurry application stimulated soil bacteria and fungi to participate in SOC cycling. The module functionality supports our speculation that soil microorganisms degraded the biogas slurry derived-ROC in the topsoil. Overall, we conclude that substitution of chemical fertilizer with biogas slurry can be beneficial for increasing SOC stocks and, in systems with straw return, enhancing straw decomposition.


Asunto(s)
Microbiota , Oryza , Agricultura , Biocombustibles , Carbono , Fertilizantes , Rotación , Suelo , Triticum
17.
Front Microbiol ; 11: 1423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733400

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen commonly infecting immunocompromised patients with diseases like cystic fibrosis (CF) and cancers and has high rates of recurrence and mortality. The treatment efficacy can be significantly worsened by the multidrug resistance (MDR) of P. aeruginosa, and there is increasing evidence showing that it is easy for this pathogen to develop MDR. Here, we identified a gene cluster, pltZ-pltIJKNOP, which was originally assumed to be involved in the biosynthesis of an antimicrobial pyoluteorin, significantly contributing to the antibiotic resistance of P. aeruginosa ATCC 27853. Moreover, the TetR family regulator PltZ binds to a semi-palindromic sequence in the promoter region of the pltIJKNOP operon and recognizes the antimicrobial 2,4-diacetylphloroglucinol (2,4-DAPG), which in turn induces the expression of the pltIJKNOP operon. Using quantitative proteomics method, it was indicated that the regulator PltZ also plays an important role in maintaining metabolic hemostasis by regulating the transporting systems of amino acids, glucose, metal ions, and bacteriocins.

18.
Int Angiol ; 39(3): 252-260, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32052947

RESUMEN

BACKGROUND: Insomnia may affect vascular factors and promote arteriosclerosis. Microparticles (MPs) are a heterogeneous group of bioactive small vesicles that can be found in blood and body fluids following activation, necrosis or apoptosis of virtually any eukaryotic cells. MPs are believed to participate in the pathogenesis of atherosclerosis. Few studies have been concerned with the microparticle level in patients with sleep disorder. The purpose of the present study is to measure the levels of endothelial microparticles (EMPs), platelet microparticles (PMPs) and leukocyte-derived microparticles (LMPs) in middle-aged and elderly patients with or without insomnia. METHODS: Patients with insomnia (N.=30) and without insomnia (N.=18) were enrolled. The insomnia group covered patients with chronic insomnia (N.=16) and acute insomnia (N.=14). Levels of EMPs (CD31 +, CD62E +) and PMPs (CD41a +, CD42a +) and granulocyte-derived (CD11a +) MPs were measured. Flow cytometry was performed on the Beckman Coulter analyzer. Reference gate was defined for the level of MPs using 0.22-0.45-0.88µm microspheres, and the size gate for MPs was 0.5-1.0µm. RESULTS: Of all types of MPs detected, the levels of CD31 +MPs, CD62E +MPs and CD11a +MPs were significantly higher in the insomnia group than in the non-insomnia group (P<0.05). Besides, compared with acute insomnia, the levels of CD31 + MPs and CD11a +MPs were significantly higher in chronic insomnia (P<0.001). CONCLUSIONS: In insomnia patients, atherosclerosis progression may be increased by the CD31+ EMPs-mediated apoptosis and endothelial injury. The level of CD11a+ LMPs kept increasing as insomnia persisted, which may indicate atherosclerosis progression.


Asunto(s)
Aterosclerosis/patología , Plaquetas/patología , Micropartículas Derivadas de Células/patología , Endotelio Vascular/patología , Monocitos/patología , Trastornos del Inicio y del Mantenimiento del Sueño/patología , Antígenos CD/sangre , Aterosclerosis/sangre , Biomarcadores/sangre , Plaquetas/metabolismo , Estudios de Casos y Controles , Micropartículas Derivadas de Células/metabolismo , Progresión de la Enfermedad , Endotelio Vascular/metabolismo , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Factores de Riesgo , Trastornos del Inicio y del Mantenimiento del Sueño/sangre
19.
Environ Sci Pollut Res Int ; 26(16): 16195-16209, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30972683

RESUMEN

CO2, SO2, and NO are the main components of flue gas and can cause serious environmental issues. Utilization of these compounds in oleaginous microalgae cultivation not only could reduce air pollution but could also produce feedstock for biodiesel production. However, the continuous input of SO2 and NO inhibits microalgal growth. In this study, the toxicity of simulated flue gas (15% CO2, 0.03% SO2, and 0.03% NO, balanced with N2) was reduced through automatic pH feedback control. Integrated lipid production and CO2 fixation with the removal of SO2 and NO was achieved. Using this technique, a lipid content of 38.0% DW was achieved in Chlorella pyrenoidosa XQ-20044. The lipid composition and fatty acid profile indicated that lipid production by C. pyrenoidosa XQ-20044 cultured with flue gas is suitable as a biodiesel feedstock; 81.2% of the total lipids were neutral lipids and 99.5% of the total fatty acids were C16 and C18. The ratio of saturated fatty acids to monounsaturated fatty acids in the microalgal lipid content was 74.5%. In addition, CO2, SO2, and NO from the simulated flue gas were fixed and converted to biomass and lipids with a removal efficiency of 95.9%, 100%, and 84.2%, respectively. Furthermore, the utilization efficiencies of CO2, SO2, and NO were equal to or very close to their removal efficiencies. These results provide a novel strategy for combining biodiesel production with biofixation of flue gas.


Asunto(s)
Biotecnología/métodos , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Lípidos/biosíntesis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/aislamiento & purificación , Contaminantes Atmosféricos/toxicidad , Biocombustibles , Biomasa , Biotecnología/instrumentación , Dióxido de Carbono/aislamiento & purificación , Dióxido de Carbono/toxicidad , Chlorella/crecimiento & desarrollo , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Concentración de Iones de Hidrógeno , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Óxido Nítrico/aislamiento & purificación , Óxido Nítrico/toxicidad , Dióxido de Azufre/aislamiento & purificación , Dióxido de Azufre/toxicidad
20.
Cell Death Dis ; 9(12): 1167, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518934

RESUMEN

ABSTACT: Conventional therapies and novel molecular targeted therapies against breast cancer have gained great advances over the past two decades. However, poor prognosis and low survival rate are far from expectation for improvement, particularly in patients with triple negative breast cancer (TNBC). Here, we found that lncRNA DANCR was significantly overregulated in TNBC tissues and cell lines compared with normal breast tissues or other type of breast cancer. Knockdown of DANCR suppressed TNBC proliferation both in vitro and in vivo. Further study of underlying mechanisms demonstrated that DANCR bound with RXRA and increased its serine 49/78 phosphorylation via GSK3ß, resulting in activating PIK3CA transcription, and subsequently enhanced PI3K/AKT signaling and TNBC tumorigenesis. Taken together, Our findings identified DANCR as an pro-oncogene and uncoverd a new working pattern of lncRNA to mediate TNBC tumorigenesis, which may be a potential therapeutic target for improving treatment of TNBC.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/genética , ARN Largo no Codificante/genética , Receptor alfa X Retinoide/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Femenino , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Ratones , Ratones Desnudos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor alfa X Retinoide/metabolismo , Transducción de Señal , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA